Google Earth Engine for Remote Sensing | Import, Upload & Export

Google Earth Engine (GEE) interface tutorial for importing satellite imagery and exporting geospatial data for GIS and remote sensing projects

Google Earth Engine (GEE) is a powerful cloud platform for geospatial analysis. In this guide, I’ll explain how to use it step by step, especially how to import and export data.


🔐 1. Sign Up and Access Code Editor


💻 2. Understand the Code Editor Interface

  • Script Panel – Write your code

  • Map Panel – View your outputs

  • Console – Shows messages or errors

  • Inspector – Click to inspect pixel values

  • Assets Panel – Upload and access your files

Like my Facebook page for more updates!🚀

📥 3. How to Import Data in Google Earth Engine

A. Import Built-in Datasets (Like Landsat or Sentinel)

var image = ee.ImageCollection("COPERNICUS/S2")
              .filterBounds(ee.Geometry.Point(73.0551, 33.6844))
              .filterDate('2021-01-01', '2021-12-31')
              .median();

Map.centerObject(image, 9);
Map.addLayer(image, {bands: ['B4', 'B3', 'B2'], max: 3000}, 'Sentinel Image');

B. Upload Your Own Data (Shapefile or CSV)

  1. In the Assets tab, click “NEW” > Table upload (for shapefile or CSV)

  2. Upload your zipped shapefile (including .shp, .dbf, .shx, .prj)

  3. After uploading, click “Import”

  4. Use in code like this:

var shapefile = ee.FeatureCollection("users/your_username/your_asset_name");
Map.addLayer(shapefile, {}, "My Shapefile");

💾 4. How to Export Data from GEE

A. Export Raster Image (GeoTIFF format)

Export.image.toDrive({
  image: image.select('B4'), // or NDVI, or any other band
  description: 'SentinelBand4',
  scale: 10,
  region: shapefile.geometry(),
  maxPixels: 1e13
});

B. Export Vector Data (Shapefile or CSV)

Export.table.toDrive({
  collection: shapefile,
  description: 'Exported_Shapefile',
  fileFormat: 'SHP' // or 'CSV'
});

🔔 Note: Your data will be saved to Google Drive, and you can download it from there.


🧪 Bonus Example: NDVI Calculation & Export

// NDVI = (NIR - Red) / (NIR + Red)
var ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI');

Map.addLayer(ndvi, {min: 0, max: 1, palette: ['white', 'green']}, 'NDVI');

Export.image.toDrive({
  image: ndvi,
  description: 'NDVI_Image',
  scale: 10,
  region: shapefile.geometry(),
  maxPixels: 1e13
});

📌 Summary Table

Task Code/Method
Import satellite data  ee.ImageCollection()
Import shapefile/CSV   Upload to Assets
View on map  Map.addLayer()
Export raster  Export.image.toDrive()
Export shapefile/CSV  Export.table.toDrive()

Read What is Google Earth Engine for more information about this!🚀

✅ Final Thoughts

Google Earth Engine makes remote sensing work easier and faster. With just a few lines of code, you can analyze massive datasets, visualize results, and export your outputs.

If you'd like a PDF guide, video tutorial, or full LULC classification workflow, just let me know in comment section—I’ll prepare it for you!

Post a Comment

2 Comments

  1. Good day please help me with the code for LULC and NDVI

    ReplyDelete
    Replies
    1. I’ll soon be adding code for LULC and NDVI analysis using Google Earth Engine to my blog. Stay tuned!

      Delete